class: center, middle, inverse, title-slide .title[ # A Spatio-Temporal Model of Arctic Sea Ice ] .subtitle[ ## Comprehensive Exam ] .author[ ### Alison Kleffner ] .date[ ### Department of Statistics, University of Nebraska - Lincoln ] --- class:primary <style> /* colors: #EEB422, #8B0000, #191970, #00a8cc */ /* define the new color palette here! */ a, a > code { color: #8B0000; text-decoration: none; } .title-slide h2::after, .mline h1::after { content: ''; display: block; border: none; background-color: #8B0000; color: #8B0000; height: 2px; } .remark-slide-content { background-color: #FFFFFF; border-top: 80px solid #8B0000; font-size: 20px; font-weight: 300; line-height: 1.5; <!-- padding: 1em 2em 1em 2em --> background-image: url(css/UNL.svg); background-position: 2% 98%; background-size: 10%; border-bottom: 0; } .inverse { background-color: #8B0000; <!-- border-top: 20px solid #696969; --> <!-- background-image: none; --> <!-- background-position: 50% 75%; --> <!-- background-size: 150px; --> } .remark-slide-content > h1 { font-family: 'Roboto'; font-weight: 300; font-size: 45px; margin-top: -95px; margin-left: -00px; color: #FFFFFF; } .title-slide { background-color: #FFFFFF; <!-- border-left: 80px solid #8B0000; --> background-image: url(css/UNL.svg); background-position: 98% 98%; <!-- background-attachment: fixed, fixed; --> background-size: 20%; border-bottom: 0; border: 10px solid #8B0000; <!-- background: transparent; --> } .title-slide > h1 { color: #111111; font-size: 32px; text-shadow: none; font-weight: 500; text-align: left; margin-left: 15px; padding-top: 80px; } .title-slide > h2 { margin-top: -25px; padding-bottom: -20px; color: #111111; text-shadow: none; font-weight: 100; font-size: 28px; text-align: left; margin-left: 15px; } .title-slide > h3 { color: #111111; text-shadow: none; font-weight: 100; font-size: 28px; text-align: left; margin-left: 15px; margin-bottom: -20px; } body { font-family: 'Roboto'; font-weight: 300; } .remark-slide-number { font-size: 13pt; font-family: 'Roboto'; color: #272822; opacity: 1; } .inverse .remark-slide-number { font-size: 13pt; font-family: 'Roboto'; color: #FAFAFA; opacity: 1; } .title-slide-custom .remark-slide-number { display: none; } .title-slide-custom h3::after, .mline h1::after { content: ''; display: block; border: none; background-color: #8B0000; color: #8B0000; height: 2px; } .title-slide-custom { background-color: #FFFFFF; <!-- border-left: 80px solid #8B0000; --> background-image: url(css/UNL.svg); background-position: 98% 98%; <!-- background-attachment: fixed, fixed; --> background-size: 20%; border-bottom: 0; border: 10px solid #8B0000; <!-- background: transparent; --> } .title-slide-custom > h1 { color: #111111; font-size: 40px; text-shadow: none; font-weight: 500; text-align: left; margin-left: 15px; padding-top: 80px; padding-bottom: 10px; } .title-slide-custom > h2 { margin-top: -25px; padding-bottom: 30px; color: #111111; text-shadow: none; font-weight: 100; font-size: 32px; text-align: left; margin-left: 15px; } .title-slide-custom > h3 { margin-top: -25px; padding-bottom: -25px; color: #111111; text-shadow: none; font-weight: 100; font-size: 32px; text-align: left; margin-left: 15px; } .title-slide-custom > h4 { color: #111111; text-shadow: none; font-weight: 100; font-size: 28px; text-align: left; margin-left: 15px; margin-bottom: -30px; padding-bottom: -25px; } .title-slide-custom > h5 { color: #111111; text-shadow: none; font-weight: 100; font-size: 24px; text-align: left; margin-left: 15px; margin-bottom: -40px; } <!-- img { --> <!-- max-width: 50%; --> <!-- } --> </style> # Outline
Motivation and Background
Research Objectives
Spatio-Temporal Clustering: Bounding Box
Spatio-Temporal Interpolation: Intersection Model
Simulation Study
Results with Ice Data
Discussion and Conclusion
Steps for Program Completion --- class:primary # Importance of Arctic Sea Ice Crack Detection + Sea ice serves as a barrier between the atmosphere and the ocean + Cracks, or leads, may form in the ice pack due to dynamic processes - Allows for heat from the ocean to be transferred to the atmosphere (Schreyer, Sulsky, Munday, Coon, and Kwok, 2006). - Accounts for half of the heat flux between the ocean and atmosphere (Badgley, 1961) + Previous ice crack detection methods can generally be split into two categories: thermal and deformation. .center[ <!-- Trigger the Modal --> <img id='imgIceChunk' src='images/Ice Chunk.png' alt=' Artice Sea Ice with Crack' width='40%'> <!-- The Modal --> <div id='modalIceChunk' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalIceChunk'> <!-- Modal Caption (Image Text) --> <div id='captionIceChunk' class='modal-caption'></div> </div> ] --- class:primary # Thermal Ice Crack Detection Methods + Surface temperature differs between a crack and the surrounding sea ice. + Use thermal channels of the Advanced Very High Resolution Radiometer (AVHRR) (Key, Stone, Maslanik, and Ellefsen, 1993) - Heavily dependent on clear skies and has issues with thin ice + Methods have been proposed to reduce the impact of clouds - Moderate Resolution Imagery Spectroradiometer (MODIS) (Willmes and Heinemann, 2015) - Fuzzy Cloud Artifact (FCAF) (Willmes and Heinemann, 2015) - Passive Microwave Data (Rohrs, Kaleschke, Brohan, and Siligam, 2012) .center[ <!-- Trigger the Modal --> <img id='imgthermal_example' src='images/thermal_example.png' alt=' Output from a Thermal Algorithm (Rohrs et al, 2012)' width='30%'> <!-- The Modal --> <div id='modalthermal_example' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalthermal_example'> <!-- Modal Caption (Image Text) --> <div id='captionthermal_example' class='modal-caption'></div> </div> ] --- class:primary # Deformation Ice Crack Detection Methods + Deformation of a cell is determined by the motion of points (Peterson and Sulsky, 2011) - Finds the determinant of deformation gradient to measure accumulated area changes to show persistent diverged regions. - Can find the size and orientation of the crack + Drawbacks - Need complete set of space-time observations to calculate deformation - The error in the deformation product may be strongly underestimated (Bouillon and Rampal, 2015) .center[ <!-- Trigger the Modal --> <img id='imggrid_example' src='images/grid_example.png' alt='Example of how find deformation (Peterson & Sulsky, 2011)' width='40%'> <!-- Trigger the Modal --> <img id='imgkinematic_crack_algorithm' src='images/kinematic_crack_algorithm.png' alt='Example of detected leads using a kinematic crack algorithm which uses the determinant of the deformation gradient to detect leads (Peterson & Sulsky, 2011)' width='30%'> <!-- The Modal --> <div id='modalgrid_example' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalgrid_example'> <!-- Modal Caption (Image Text) --> <div id='captiongrid_example' class='modal-caption'></div> </div> <!-- The Modal --> <div id='modalkinematic_crack_algorithm' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalkinematic_crack_algorithm'> <!-- Modal Caption (Image Text) --> <div id='captionkinematic_crack_algorithm' class='modal-caption'></div> </div> ] --- class:primary # Data .center[ <!-- Trigger the Modal --> <img id='imgrgps_grid' src='images/rgps_grid.jpg' alt='Example of initial grid used to track movement (Peterson & Sulsky, 2011)' width='25%'> <!-- The Modal --> <div id='modalrgps_grid' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalrgps_grid'> <!-- Modal Caption (Image Text) --> <div id='captionrgps_grid' class='modal-caption'></div> </div> ] + Sea Ice can be tracked by NASA's RADARSTAT Geophysical Processor System (RGPS), which uses synthetic aperture radar (SAR) images to track the trajectory of points on an ice sheet. + Each grid cell vertex is assigned an identifier (cell `\(j=1,...,n\)`) which is used for tracking + Set of all trajectories: .center[ `\(\mathcal{G} = \left\{g_1, ..., g_n\right\}\)` `\(\\\)` where `\(g_{j} = \left\{s_{jt} : t \in \mathcal{T}_j\right\}\)`, `\(\mathcal{T}_j \subset \left\{t=1...T\right\}\)` a collection of time points where `\(cell_j\)` is observed `\(\\\)` and `\({s_{jt}}\)` = `\((x_{jt}, y_{jt})\)` ] + For our study region, `\(n\)` = 8811, and `\(T\)` = 22 ??? An illustration of RGPS data is shown in Fig. 7.1, where satellite views of a 50 km by 50 km region of Arctic ice have a 5 km × 5 km RGPS grid superimposed. The time span between the first and second observation is 18.5 h and the satellite images were recorded in mid May 2002. --- class:primary # Motivating Picture + Each line is a trajectory, `\(g_j\)`, plotted in an x-y coordinate .center[ <!-- Trigger the Modal --> <img id='imgtraj_plot' src='images/traj_plot.png' alt='Plot of id trajectories to show movement and directiction of movement' width='90%'> <!-- The Modal --> <div id='modaltraj_plot' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodaltraj_plot'> <!-- Modal Caption (Image Text) --> <div id='captiontraj_plot' class='modal-caption'></div> </div> ] --- class:primary # Research Objectives 1. Develop a ice crack detection method - Using only the movement of the ice sheet - Cluster trajectories based on movement - The boundaries would be possible locations of ice cracks 2. Develop a spatio-temporal (ST) interpolation method to predict missing points along a trajectory - Using the information gained from the clustering - Take into account nonstationarity of the data (estimate parameters separately for each cluster) --- class:primary # Existing ST Clustering Methods + Combination of geographic location with time introduces new challenges in clustering, where a cluster is now determined based on spatial and temporal similarity `\(\\\)` `\(\\\)` + Similarity Measures - One of the components of a clustering algorithm is to determine how to measure similarity - Similarity measures have been developed for spatio-temporal data, but many rely on having trajectories of the same length or are sensitive to noise + Density-Based Clustering - Objects that are densely packed in a region should be grouped together in a cluster - Can cluster objects into any shape and number of clusters do not need to be pre-defined - However, since our data is based on a grid, point density will be consistent across the domain + Model-Based Clustering - Can assume a model for each cluster, where the best fitting data for the model is found in order to determine cluster membership - Can be difficulty in finding the assume model (Info from (Ansari, Ahmad, Khan, Bhushan, and others, 2020)) --- class:primary # Existing ST Clustering Methods + Nonstationary Models (Kim, Mallick, and Holmes, 2005) - Data can be partitioned and a model can be developed for each partition - Partitioning can be accomplished through a Voronoi Tesselation and then use a Piecewise Gaussian Process to model the nonstationary process - Currently these methods are only for a spatial domain .center[ <!-- Trigger the Modal --> <img id='imgvoronoi_tesselation' src='images/voronoi_tesselation.png' alt='Example of a Voronoi Tesselation' width='30%'> <!-- The Modal --> <div id='modalvoronoi_tesselation' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalvoronoi_tesselation'> <!-- Modal Caption (Image Text) --> <div id='captionvoronoi_tesselation' class='modal-caption'></div> </div> ] --- class:primary # Find Ice Trajectory Features: Bounding Box + We create a bounding box around for each trajectory to represent it's movement + Bounding Box Features: - Length travel in x/y between the minimum and maximum location .center[ ( `\(x_{max} - x_{min}\)` and `\(y_{max} - y_{min}\)`)] - Length travel in x/y between latest and earliest observation .center[ ( `\(x_{1} - x_{0}\)` and `\(y_{1} - y_{0}\)`)] - Angle of movement (direction) - Average x/y value - If clustering a sub-trajectory, can also include previous features .center[ <!-- Trigger the Modal --> <img id='imgboundingbox' src='images/bounding-box.png' alt='Points used to Develop Bounding Box' width='25%'> <!-- The Modal --> <div id='modalboundingbox' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalboundingbox'> <!-- Modal Caption (Image Text) --> <div id='captionboundingbox' class='modal-caption'></div> </div> ] --- class:primary #Clustering with K-Means + Bounding Box features were used as input into K-Means clustering, which partitions n observations into k clusters. + K-Means Clustering (Steinley, 2006) - All observations must belong to a cluster and each cluster, k, must have at least one observation - Iterative Procedure - Minimize squared Euclidean distance between an observation and the centroid vector of a cluster - Centroid vector found by averaging the features of each cluster member --- class:primary #Clustering with K-Means + **Drawback**: Number of Clusters must be specified prior to clustering - Number of Clusters determined using the Silhouette statistic + Silhouette Statistic (Kodinariya and Makwana, 2013) - Compares within cluster distances to between cluster distances .center[ `\(s(i) = \frac{b(i) - a(i)}{max(a(i), b(i))}\)` `\(\\\)` where `\(a(i)\)` is the average distance between i and observations in same cluster and `\(b(i)\)` is the minimum average distance between i and observations in other clusters ] - Number of clusters determined by largest average silhoutte width .center[ <!-- Trigger the Modal --> <img id='imgsilhouette_stat' src='images/silhouette_stat.jpeg' alt='Silhouette Statistic for Clustering using all of our Data' width='40%'> <!-- The Modal --> <div id='modalsilhouette_stat' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalsilhouette_stat'> <!-- Modal Caption (Image Text) --> <div id='captionsilhouette_stat' class='modal-caption'></div> </div> ] --- class:primary #Missing Data + In general, data collection methods may fail, leaving positions in a trajectory unknown or may want to overcome sampling sparseness + In our case, missing data is due to the path of the satellite used to collect the data. .center[ <!-- Trigger the Modal --> <img id='imgdata_example' src='images/data_example.jpeg' alt='Missing Data within the Ice Sheet' width='80%'> <!-- The Modal --> <div id='modaldata_example' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodaldata_example'> <!-- Modal Caption (Image Text) --> <div id='captiondata_example' class='modal-caption'></div> </div> ] --- class:primary #Linear Interpolation for Ice Trajectory + Popular due to ease in implementation + Performs best for linearly moving objects, or can potentially work well with non-linear data if sample in high enough frequency (Guo, Mou, Chen, and Chen, 2021) <br> .center[ <!-- Trigger the Modal --> <img id='imglinpic2' src='images/lin-pic2.png' alt='How Linear Interpolation Calculates a Missing Point' width='60%'> <!-- The Modal --> <div id='modallinpic2' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodallinpic2'> <!-- Modal Caption (Image Text) --> <div id='captionlinpic2' class='modal-caption'></div> </div> ] --- class:primary #Finding Spatio-Temporal Neighbors + Using information gained from clusters to identify spatio-temporal neighbors - Know how other points in the cluster move at a time point - Would expect a missing point at that time to move similarly to known points + Cluster by Weekly trajectories to find neighbors - Cluster by weeks because as smallest interval could detect movement and also see some continuity between weeks - Intersection of one week's clusters with the week before and week after would create groups - Each member of a group is then a spatio-temporal neighbor of the other members as they are in a similar geographic region over time. --- class:primary #Finding Spatio-Temporal Neighbors - Steps 1. Create a polygon around each cluster for a week - Finding boundary coordinates of the clusters - Done in a sequential manner 2. After a polygon is created, all `\(cell_j\)` located in that polygon are removed from the dataset. - This was done to decrease the amount of overlapping polygons - Make sure each `\(cell_j\)` is found within a polygon - do not want to lose data 3. Find the intersection of the weekly polygons - All of the points within that intersection are spatio-temporal neighbors. .center[ <!-- Trigger the Modal --> <img id='imgintersection_ex' src='images/intersection_ex.jpeg' alt='Example of finding Intersection Polygons' width='50%'> <!-- The Modal --> <div id='modalintersection_ex' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalintersection_ex'> <!-- Modal Caption (Image Text) --> <div id='captionintersection_ex' class='modal-caption'></div> </div> ] --- class:primary #Gaussian Process (GP) **For Spatial Data** `\(\left\{X(s): s \in D \subset R^2\right\}\)` is a Gaussian Process if all its finite-dimensional distributions are Gaussian .center[ ie. `\(X(s) \sim GP(0,c(.|.))\)` ] Meaning, for `\(\left\{s_1,...,s_n\right\}\)`, `\(x\)` = `\((x_1,...,x_n)^T \sim MVN(0, \Sigma_{\theta})\)` Can define `\(\Sigma_{\theta}\)` as the Exponential Covariance Function (Guinness and Katzfuss, 2021) .center[ `\(\Sigma_{\theta} = \sigma^2\exp(-||x-y||/\phi)\)` `\(\\\)` where `\(\sigma^2\)` is the variance and `\(\phi\)` is the range ] Joint density of the observations can be written as a product of conditional densities (Guinness, 2018) .center[ `\(f(x_1,...,x_n) = f(x_1)\prod^n_{i=2} f(x_{i}|x_{1},...,x_{i-1})\)` ] This can be a computationally complex process due to the inversion of `\(\Sigma_{\theta}\)` --- class:primary #Gaussian Process (GP) **Extension to ST Data** Now, the covariance function is an Exponential Space-Time, which is a separable covariance function (Wikle et al, 2019) .center[ `\(\Sigma_{\theta}(s;t) = \Sigma_{\theta}^{(s)}*\Sigma_{\theta}^{(t)}\)` `\(\\\)` where `\(\Sigma_{\theta}^{(s)} = \sigma^2\exp\left\{-||x-y||/\phi\right\}\)` and `\(\Sigma_{\theta}^{(t)} = \sigma^2\exp\left\{-|t|/\tau\right\}\)` where `\(\sigma^2\)` = variance, `\(\phi\)` = spatial range, `\(\tau\)` = temporal range ] Separability can speed up computations if no missing data, but we do... --- class:primary #Vecchia's Approximation for a GP + **Goal:** To speed up calculation of a GP + Writes the joint density as a product of conditional distributions, where only a subset of the data is used to create the conditional distributions (Guinness, 2018) .center[ `\(f(x_1,...,x_n) = f(x_1)\prod^n_{i=2} f(x_i|x_{n(i)})\)` `\(\\\)` where `\(n(i)\)` are the neighbors of observation `\(i\)` ] + Neighbors are obtained from the order of points (Vecchia, 1988) + Vecchia's Approximation is implemented in the GpGp package, where updates to the ordering method and a grouping method were introduced to speed up calculations (Guinness and Katzfuss, 2021) --- class:primary #Spatio-Temporal Interpolation + Individual model developed for both x and y using the GpGp package in R (Guinness and Katzfuss, 2021) - Within each intersection - Due this to take into account the nonstationarity + Use Exponential Space-Time covariance function (as previously defined) + Output is the maximum likelihood estimates for the mean and covariance parameters + Use model to determine estimates of missing locations - From the conditional expectation of the model - Create a grid encompassing our ice sheet to give a starting value of the missing locations. - The model will then adjust this location using its known neighbors --- class:primary #Simulation Study + Create Underlying Process Grid - Simulating movement of ocean that causes observations to move - Initial grid was created and shifted seven times to represent seven days of movement in the underlying process. - This data is then used to create the covariance matrix, `\(C_{d,c}(\theta)\)` - Covariance parameters and defined mean trend ( `\(\mu_{d,c}\)` ) is different for each cluster `\(\\\)` .center[ `\(U_{d,c}(s,t) \sim GP(\mu_{d,c}, C_{d,c}(\theta))\)` `\(\\\)` where `\(U_{d,c}(s,t)\)` is the displacement at location `\(s\)` & time `\(t\)` `\(\\\)` for `\(d\)` = x or y, cluster `\(c\)` ] **Note**: Only 2 clusters for simplicity --- class:primary #Simulation Study + Create Observed Grid - Movement of an observed point is determined by the value of the nearest point of the underlying process for that day ( `\(g\)` ) - Obtained a week's worth of simulated data .center[ `\((x_{t,j}, y_{t,j}) = (U^{X}_{t-1,c,g}, U^{Y}_{t-1,c,g}) + (x_{t-1,j}, y_{t-1,j})\)` `\(\\\)` where t=1,...,7 (time), j = 1,...,121 (id), `\(\\\)` U is the underlying process value at `\(t-1\)` for cluster ( `\(c\)` ) and grid id ( `\(g\)` ) ] .center[ <!-- Trigger the Modal --> <img id='imgboth_grid2' src='images/both_grid2.jpeg' alt='Underlying and Observed Grid Plotted Together' width='40%'> <!-- The Modal --> <div id='modalboth_grid2' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalboth_grid2'> <!-- Modal Caption (Image Text) --> <div id='captionboth_grid2' class='modal-caption'></div> </div> ] --- class:primary #Simulated Data Created 3 different scenarios, each with different parameter values. .center[ <!-- Trigger the Modal --> <img id='imgsim_traj' src='images/sim_traj.png' alt='Simulated Trajectories for Each Simulation' width='90%'> <!-- The Modal --> <div id='modalsim_traj' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalsim_traj'> <!-- Modal Caption (Image Text) --> <div id='captionsim_traj' class='modal-caption'></div> </div> ] --- class:primary #Simulated Clustering Results + Results are shown at two different time points - On initial grid ( `\(t=0\)` ) - On last day of the week ( `\(t=7\)` ) <br> <br> <br> .center[ <!-- Trigger the Modal --> <img id='imgsim_init_clust' src='images/sim_init_clust.png' alt='Clusters for each Simulation at t=0' width='40%'> <!-- Trigger the Modal --> <img id='imgsim_last_clust' src='images/sim_last_clust.png' alt='Clusters for each Simulation at t=7' width='40%'> <!-- The Modal --> <div id='modalsim_init_clust' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalsim_init_clust'> <!-- Modal Caption (Image Text) --> <div id='captionsim_init_clust' class='modal-caption'></div> </div> <!-- The Modal --> <div id='modalsim_last_clust' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalsim_last_clust'> <!-- Modal Caption (Image Text) --> <div id='captionsim_last_clust' class='modal-caption'></div> </div> ] --- class:primary #Simulated Interpolation Results + Simulated and clustered another week of data. + 10% of the data for the first week are randomly assigned to be missing. + Other methods for comparison: - Linear Interpolation - Instead of running model inside each intersection, a model was developed using all known points (essentially ignoring the nonstationarity aspect of our data) <br> <table style="width:80%;"> <caption>RMSE for Interpolation Methods</caption> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Intersection Model</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Linear</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">No Intersection Model</div></th> </tr> <tr> <th style="text-align:center;"> Simulation </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 1.496 </td> <td style="text-align:center;"> 1.517 </td> <td style="text-align:center;"> 1.042 </td> <td style="text-align:center;"> 1.226 </td> <td style="text-align:center;"> 1.438 </td> <td style="text-align:center;"> 1.295 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 1.628 </td> <td style="text-align:center;"> 1.580 </td> <td style="text-align:center;"> 1.455 </td> <td style="text-align:center;"> 1.540 </td> <td style="text-align:center;"> 1.474 </td> <td style="text-align:center;"> 1.488 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 1.342 </td> <td style="text-align:center;"> 1.338 </td> <td style="text-align:center;"> 0.950 </td> <td style="text-align:center;"> 0.920 </td> <td style="text-align:center;"> 1.458 </td> <td style="text-align:center;"> 1.489 </td> </tr> </tbody> </table> --- class:primary #Simulated Interpolation Results <table> <caption>RMSE for Interpolation Methods by cluster</caption> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="2"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Intersection</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Linear</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">No Intersection</div></th> </tr> <tr> <th style="text-align:center;"> Simulation </th> <th style="text-align:center;"> Cluster </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 1.383 </td> <td style="text-align:center;"> 1.555 </td> <td style="text-align:center;"> 0.815 </td> <td style="text-align:center;"> 1.163 </td> <td style="text-align:center;"> 1.562 </td> <td style="text-align:center;"> 1.290 </td> </tr> <tr> <td style="text-align:center;"> </td> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 1.573 </td> <td style="text-align:center;"> 1.488 </td> <td style="text-align:center;"> 1.188 </td> <td style="text-align:center;"> 1.272 </td> <td style="text-align:center;"> 1.337 </td> <td style="text-align:center;"> 1.298 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 1.700 </td> <td style="text-align:center;"> 1.653 </td> <td style="text-align:center;"> 1.316 </td> <td style="text-align:center;"> 1.329 </td> <td style="text-align:center;"> 1.658 </td> <td style="text-align:center;"> 1.596 </td> </tr> <tr> <td style="text-align:center;color: black !important;background-color: yellow !important;"> </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 2 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1.584 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1.534 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1.503 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1.612 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1.407 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1.451 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 1.318 </td> <td style="text-align:center;"> 1.346 </td> <td style="text-align:center;"> 1.156 </td> <td style="text-align:center;"> 1.096 </td> <td style="text-align:center;"> 1.434 </td> <td style="text-align:center;"> 1.405 </td> </tr> <tr> <td style="text-align:center;"> </td> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 1.353 </td> <td style="text-align:center;"> 1.334 </td> <td style="text-align:center;"> 0.647 </td> <td style="text-align:center;"> 0.673 </td> <td style="text-align:center;"> 1.484 </td> <td style="text-align:center;"> 1.581 </td> </tr> </tbody> </table> --- class:primary #Simulated Interpolation Results + A benefit of using a model-based approach is that are able to determine the uncertainty of the estimate. + Conducted 30 simulations of predictions, which are used to calculate the standard deviation + Found Intervals by .center[ `\(\hat{x} \pm (2*\sigma_x)\)` and `\(\hat{y} \pm (2*\sigma_y)\)` ] + Then found the proportion of intervals that contained the true value <table style='width:80%;'> <caption>Coverage</caption> <thead> <tr> <th style="text-align:center;"> Simulation </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 0.281 </td> <td style="text-align:center;"> 0.298 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 0.188 </td> <td style="text-align:center;"> 0.250 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 0.291 </td> <td style="text-align:center;"> 0.375 </td> </tr> </tbody> </table> --- class:primary #Ice Data Results: Clustering Using All Data .center[ <!-- Trigger the Modal --> <img id='imgall_clust' src='images/all_clust.jpeg' alt='Clustering of Ice Trajectories using All Data in Bounding Box' width='90%'> <!-- The Modal --> <div id='modalall_clust' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalall_clust'> <!-- Modal Caption (Image Text) --> <div id='captionall_clust' class='modal-caption'></div> </div> ] --- class:primary #Clustering Using All Data - Comparison + Can compare our results with deformation data found using a kinematic crack algorithm calculated using the RGPS data (Peterson and Sulsky, 2011) - Note that this image does not represent the true ice cracks, just the cracks determined by this method. .center[ <!-- Trigger the Modal --> <img id='imgallweekscomp' src='images/all-weeks-comp.png' alt='Comparison of Our Results to a Kinematic Crack Algorithm' width='80%'> <!-- The Modal --> <div id='modalallweekscomp' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalallweekscomp'> <!-- Modal Caption (Image Text) --> <div id='captionallweekscomp' class='modal-caption'></div> </div> ] --- class:primary #Ice Data Results: Clustering by Week .center[ <!-- Trigger the Modal --> <img id='imgclust_by_week' src='images/clust_by_week.png' alt='Results of Clustering by Week' width='90%'> <!-- The Modal --> <div id='modalclust_by_week' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalclust_by_week'> <!-- Modal Caption (Image Text) --> <div id='captionclust_by_week' class='modal-caption'></div> </div> ] --- class:primary #Overall Interpolation Results along Border + Took a random hold-out of points along the border, as the border may be locations of irregular movement <table style="width:80%;"> <caption>RMSE for Interpolation Methods along Border</caption> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Intersection</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Linear</div></th> </tr> <tr> <th style="text-align:right;"> Week </th> <th style="text-align:right;"> X </th> <th style="text-align:right;"> Y </th> <th style="text-align:right;"> X </th> <th style="text-align:right;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;color: black !important;background-color: yellow !important;"> 1 </td> <td style="text-align:right;color: black !important;background-color: yellow !important;"> 3.215 </td> <td style="text-align:right;color: black !important;background-color: yellow !important;"> 3.408 </td> <td style="text-align:right;color: black !important;background-color: yellow !important;"> 1.606 </td> <td style="text-align:right;color: black !important;background-color: yellow !important;"> 4.494 </td> </tr> <tr> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3.539 </td> <td style="text-align:right;"> 3.256 </td> <td style="text-align:right;"> 2.034 </td> <td style="text-align:right;"> 1.832 </td> </tr> <tr> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3.031 </td> <td style="text-align:right;"> 2.958 </td> <td style="text-align:right;"> 0.991 </td> <td style="text-align:right;"> 1.240 </td> </tr> </tbody> </table> --- class:primary #Interpolation Results along Border for Week 2 <table style="width:80%;"> <caption>RMSE for Interpolation Methods by cluster for Week 2</caption> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Intersection</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Linear</div></th> </tr> <tr> <th style="text-align:center;"> Cluster </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 2.81 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 3.04 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 3.82 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 5.19 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 2.94 </td> <td style="text-align:center;"> 2.96 </td> <td style="text-align:center;"> 2.39 </td> <td style="text-align:center;"> 0.99 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 2.94 </td> <td style="text-align:center;"> 3.07 </td> <td style="text-align:center;"> 1.46 </td> <td style="text-align:center;"> 1.97 </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 3.26 </td> <td style="text-align:center;"> 3.20 </td> <td style="text-align:center;"> 1.32 </td> <td style="text-align:center;"> 0.54 </td> </tr> <tr> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> 4.14 </td> <td style="text-align:center;"> 3.88 </td> <td style="text-align:center;"> 0.43 </td> <td style="text-align:center;"> 0.34 </td> </tr> </tbody> </table> --- class:primary #Interpolation Results along Border by Week + Cluster 1: Data is More Spread out and not linear + Cluster 5: Data does not move much .center[ <!-- Trigger the Modal --> <img id='imgw1_c1_traj' src='images/w1_c1_traj.jpeg' alt='Cluster Trajectories where our method performs the best' width='40%'> <!-- Trigger the Modal --> <img id='imgw2_c5_traj' src='images/w2_c5_traj.jpeg' alt='CCluster Trajectories where Linear Interpolation performs the best' width='40%'> <!-- The Modal --> <div id='modalw1_c1_traj' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalw1_c1_traj'> <!-- Modal Caption (Image Text) --> <div id='captionw1_c1_traj' class='modal-caption'></div> </div> <!-- The Modal --> <div id='modalw2_c5_traj' class='modal'> <!-- Modal Content (The Image) --> <img class='modal-content' id='imgmodalw2_c5_traj'> <!-- Modal Caption (Image Text) --> <div id='captionw2_c5_traj' class='modal-caption'></div> </div> ] --- class:primary #Coverage Proportion by Cluster <br> <table style="width:75%;"> <caption><b>Coverage for Week 2</b></caption> <thead> <tr> <th style="text-align:center;"> Cluster </th> <th style="text-align:center;"> X </th> <th style="text-align:center;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 1 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 0.467 </td> <td style="text-align:center;color: black !important;background-color: yellow !important;"> 0.413 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 0.280 </td> <td style="text-align:center;"> 0.278 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 0.337 </td> <td style="text-align:center;"> 0.351 </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0.260 </td> <td style="text-align:center;"> 0.251 </td> </tr> <tr> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> 0.149 </td> <td style="text-align:center;"> 0.163 </td> </tr> </tbody> </table> --- class:primary # Discussion of Methods **Clustering with Bounding Box:** + Advantages - Provides information about how the data is moving - Shown through simulations and the ice data to provide a reasonable estimation of the locations of cracks + Drawbacks - Relies on a pre-defined number of clusters, which generally is not known - Have a set number of cluster, so a limit on how many cluster boundaries, thus cracks. **ST Interpolation with Intersection Models:** + Advantages - Takes into account the nonstationarity of the data - Showed some improvement, in terms of RMSE, over linear interpolation for curved data that is not highly sampled - Able to estimate data on first and last day of a dataset, which linear interpolation is not able to do. - Able to calculate uncertainty --- class:primary #Comments on Model Development + Log-likelihood does not converge - Temporal range value is exceptionally large especially in comparison to the spatial range + Impractical Covariance Parameter estimates - large temporal range - This may be due to only working with small amount of data that is not moving much over time - With the simulated data, as more days were added to the dataset, the temporal range does slowly decrease + Potentially not a lot of data in the intersection - Some intersections are small - Need variation in time --- class:primary # Steps for Program Completion + Modeling Arctic Sea Ice - Bivariate Interpolation - Visualization of results - Investigate model further (why covariance parameter estimates impractical) + Visualization and comparison of spatial field data + Explaining Machine Learning Output for Spatial Data (Next Step) - To explain what the optimal management decisions are for profitability for a farmer's field, accounting for a range of factors. - Develop a user-interface which will be designed around explaining machine learning output to non-experts, - Build trust in the model predictions without requiring farmers to learn the details of statistical modeling. --- class:primary # References <font size="2"> <p><cite><a id='bib-ansari_spatiotemporal_2020'></a><a href="#cite-ansari_spatiotemporal_2020">Ansari, M. Y., A. Ahmad, S. S. Khan, et al.</a> (2020). “Spatiotemporal clustering: a review”. In: <em>Artificial Intelligence Review</em> 53.4, pp. 2381–2423. DOI: <a href="https://doi.org/10.1007/s10462-019-09736-1">10.1007/s10462-019-09736-1</a>.</cite></p> <p><cite><a id='bib-badgley_1961'></a><a href="#cite-badgley_1961">Badgley, F.</a> (1961). “Heat balance at the surface of the arctic ocean”. In: <em>Proc 29th Annual Western 528 Snow Conference Spokane</em>. , pp. 101–104.</cite></p> <p><cite><a id='bib-bouillon_producing_2015'></a><a href="#cite-bouillon_producing_2015">Bouillon, S. and P. Rampal</a> (2015). “On producing sea ice deformation dataset from SAR-derived sea ice motion”. In: <em>The Cryosphere</em> 9, pp. 663–673. DOI: <a href="https://doi.org/10.5194/tc-9-663-2015">10.5194/tc-9-663-2015</a>. URL: <a href="www.the-cryosphere.net/9/663/2015/">www.the-cryosphere.net/9/663/2015/</a>.</cite></p> <p><cite><a id='bib-gpgp_pkg'></a><a href="#cite-gpgp_pkg">Guinness, J. and M. Katzfuss</a> (2021). <em>GpGp: fast Gaussian process computation using Vecchia’s approximation</em>. R package version 0.4.0. URL: <a href="https://cran.r-project.org/web/packages/GpGp">https://cran.r-project.org/web/packages/GpGp</a>.</cite></p> <p><cite><a id='bib-guo_improved_2021'></a><a href="#cite-guo_improved_2021">Guo, S., J. Mou, L. Chen, et al.</a> (2021). “Improved kinematic interpolation for AIS trajectory reconstruction”. In: <em>Ocean Engineering</em> 234, p. 109256. DOI: <a href="https://doi.org/10.1016/j.oceaneng.2021.109256">10.1016/j.oceaneng.2021.109256</a>.</cite></p> <p><cite><a id='bib-key_detectability_1993'></a><a href="#cite-key_detectability_1993">Key, J., R. Stone, J. Maslanik, et al.</a> (1993). “The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale”. In: <em>Annals of Glaciology</em> 17, pp. 227–232. DOI: <a href="https://doi.org/10.3189/S026030550001288X">10.3189/S026030550001288X</a>.</cite></p> <p><cite><a id='bib-kim_analyzing_2005'></a><a href="#cite-kim_analyzing_2005">Kim, H., B. K. Mallick, and C. Holmes</a> (2005). “Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes”. In: <em>Journal of the American Statistical Association</em> 100.470, pp. 653–668. DOI: <a href="https://doi.org/10.1198/016214504000002014">10.1198/016214504000002014</a>.</cite></p> <p><cite><a id='bib-kodinariya_2013'></a><a href="#cite-kodinariya_2013">Kodinariya, T. and P. Makwana</a> (2013). “Review on Determining of Cluster in K-means Clustering”. In: <em>International Journal of Advance Research in Computer Science and Management Studies</em> 1, pp. 90–95.</cite></p> <p><cite><a id='bib-peterson_evaluating_2011'></a><a href="#cite-peterson_evaluating_2011">Peterson, K. and D. Sulsky</a> (2011). “Evaluating Sea Ice Deformation in the Beaufort Sea Using a Kinematic Crack Algorithm with RGPS Data”. In: <em>Remote Sensing of the Changing Oceans</em>. Berlin, Heidelberg: Springer. ISBN: 978-3-642-16541-2.</cite></p> <p><cite><a id='bib-rohrs_algorithm_2012'></a><a href="#cite-rohrs_algorithm_2012">Rohrs, J., L. Kaleschke, D. Brohan, et al.</a> (2012). “An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery”. In: <em>The Cryosphere</em> 6.2, pp. 343–352. DOI: <a href="https://doi.org/10.5194/tc-6-343-2012">10.5194/tc-6-343-2012</a>.</cite></p> <p><cite><a id='bib-schreyer_elastic_2006'></a><a href="#cite-schreyer_elastic_2006">Schreyer, H. L., D. L. Sulsky, L. B. Munday, et al.</a> (2006). “Elastic-decohesive constitutive model for sea ice”. In: <em>Journal of Geophysical Research: Oceans</em> 111.C11. DOI: <a href="https://doi.org/10.1029/2005JC003334">10.1029/2005JC003334</a>.</cite></p> </font> --- class:primary # References <font size="2"> <p><cite><a id='bib-steinley_kmeans_2006'></a><a href="#cite-steinley_kmeans_2006">Steinley, D.</a> (2006). “K-means clustering: A half-century synthesis”. In: <em>British Journal of Mathematical and Statistical Psychology</em> 59.1, pp. 1–34. DOI: <a href="https://doi.org/10.1348/000711005X48266">10.1348/000711005X48266</a>.</cite></p> <p><cite><a id='bib-vecchia1988estimation'></a><a href="#cite-vecchia1988estimation">Vecchia, A. V.</a> (1988). “Estimation and model identification for continuous spatial processes”. In: <em>Journal of the Royal Statistical Society: Series B (Methodological)</em> 50.2, pp. 297–312.</cite></p> <p><cite><a id='bib-willmes_pan-arctic_2015'></a><a href="#cite-willmes_pan-arctic_2015">Willmes, S. and G. Heinemann</a> (2015). “Pan-Arctic lead detection from MODIS thermal infrared imagery”. In: <em>Annals of Glaciology</em> 56, pp. 29–37. DOI: <a href="https://doi.org/10.3189/2015AoG69A615">10.3189/2015AoG69A615</a>.</cite></p> Wikle, C.K., Zammit-Mangion, A., and Cressie, N. (2019). Spatio-Temporal Statistics with R. Chapman & Hall/CRC, Boca Raton, FL. </font> --- class:inverse <br> <br> <br> .center[ # Questions? <br> <br> ]